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Abstract

The development of smart product design through the integration of additive manufacturing (AM) and artificial intelligence (AI) has
become a game changer in the production value chain of Industry 4.0. This is premised on today’s trend of moving away from mechanical
technologies to digitization processes driven by Al This trend has harnessed an Al-driven intelligent approach in creating new avenues
for manufacturing process and system optimization in the era of Industry 4.0 and the emerging Industry 5.0. Conversely, there are
concerns about how Al-driven design optimization can improve product manufacturability and performance. Thus, this study discusses
the key processes, challenges, and opportunities in integrating AM and Al for smart product design. The study further suggests the
possible utilization of the recent large language models (LLMs) and customized robots as designers to enable AM capabilities for
optimizing smart product design and product performance, reducing production time, and possibly producing more product units at a
much lower cost, instead of employing AM only. With the aid of this study and the AM-AI with LLMs taxonomy outlined, the convergence

shows promising potential in synthesizing intelligent and smart product designs.
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1. Introduction

The industrial landscape has undergone a significant transforma-
tion with the rise of Industry 4.0, which has driven the merging
of digital and physical technologies to manage manufacturing
processes. Artificial intelligence (AI) and additive manufactur-
ing (AM) are key technologies leading this change. Imagine a
future factory where the combination of these technologies can
conveniently manage each printed layer for a product assembly,
from utilizing real-time data from sensors to optimizing the de-
sign environment platform’s geometry, process parameters, and
structural performance estimates before the next powder layer
solidifies. A synergistic relationship between AM and Al is quickly
becoming vital for this success, in line with the vision of Industry
4.0 and the emerging Industry 5.0, which focuses on sustain-
ability, human-machine collaboration, and hyper-customization.
AT’s adaptive control, predictive analytics, and generative design
abilities make the process more efficient. AM’s inherent design
freedom enables the direct conversion of computer-aided design
(CAD) into physical parts with minimal waste. As factories trans-
form to Industry 5.0, smart manufacturing allows data acquisi-
tion from machines for smart processes, offering flexibility that
delivers high-quality products at economically friendly prices [1].
This 21st-century innovation has transformed the composition of
the workforce, boosted industrial growth, improved economics,
and enhanced productivity [2]. Al supports intelligent decision-
making and process optimization, while AM, often called 3D print-
ing, allows the creation of complex geometries and customized pr-

oducts. Combining AM with Al could revolutionize product design
by producing intelligent, flexible, and efficient goods [3, 4]. To-
day, many manufacturing companies are required to seek greater
flexibility in design and production. The increasing demand for
customized and high-value products drives this shift. As a result,
customized manufacturing has emerged, where design and fabri-
cation are tailored to individual client needs. This includes mass
customization, build-to-order, and small production runs [5-7].

Despite the growing research on advances in AM driven by Al,
the field still lacks conceptual consistency. Research on AM’s role
in smart manufacturing ecosystems is plentiful [8, 9]; however,
most of this research treats Al and AM separately, according to
Dehghan et al. [10]. The industrial deployment assessment by
Windmann et al. [11] highlighted data silos, outdated hardware,
and staff skill gaps as major challenges. However, they did not
provide a unified framework. Furthermore, studies have shown
that Al, autonomous robots, and digital twins can reduce design
cycles; nonetheless, they failed to systematically connect these
innovations to AM’s layer-by-layer dynamics [12—16]. Building
on these gaps in the literature, this work offers a conceptual
discussion based on different studies’ perspectives to support the
convergence of AT and AM themes, ensuring that the taxonomy
of AI-AM convergence is comprehensive and easy to understand
for harnessing its enormous potential. By examining the current
status of AM-AI integration, its uses, advantages, and challenges,
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this study seeks to provide a perspective to enhance interdisci-
plinary knowledge in this area. The convergence of AM and Al
in smart product design is specifically examined in this paper,
emphasizing potential avenues for future study.

The amalgamation of AM and Al in product design is essential for
the realization of Industry 5.0’s objectives of hyper-customization,
sustainability, and human-machine collaboration. Nonetheless,
a cohesive framework elucidating how these technologies facili-
tate intelligent product design is pertinent. Large language mod-
els (LLMs) possess unexploited potential to coordinate compre-
hensive design-manufacture pipelines; nevertheless, systematic
understanding of their function within AM ecosystems is lim-
ited. This fragmentation obstructs practitioners from utilizing
cross-disciplinary synergies and impedes the advancement of
completely autonomous “robot-designer” workflows. This work
presents a generalized manufacturing process, AM with prod-
uct design, the role of AI and smart manufacturing in Industry
5.0, Al and product manufacturing, including design for additive
manufacturing (DfAM), and concludes with the challenges and
prospects of Al-guided AM based on a three-mode taxonomy
centered around the pathway to LLM-driven autonomous design
agents.

2. Customized manufacturing processes

The manufacturing sector’s reaction to the demands of a more
contemporary and dynamic environment is mass customization,
a hybrid of mass production and customized production. New
chances and difficulties for uniqueness in consuming are al-
ways being created by society. The modern individualist drives
a specially customized car, wears clothing that suits them, and
consumes their own cereals that they purchase online [17]. This
customized product must be properly identified with the proper
material characterization so that a suitable welding technique can
be applied to forestall any distortion of the material’s internal
lattice, which can lead to unexpected deformation [18, 19].

In other words, products that meet the specific demands of each
consumer are in high demand in a buyer’s market. Manufactur-
ing businesses must balance providing competitive pricing with
expanding the external diversity that the market demands [20].
Mass customization aims to meet each unique consumer’s de-
mands at a price point that appeals to a sizable portion of the
market. Typical mass customization strategies offer a middle
ground between uniformity and unadulterated uniqueness [21].
In order to achieve economies of scale at the component level
and to simplify development and production capabilities, product
family design should strive for an adequate number of exterior
product variations in addition to a reasonable amount of internal
diversity [22, 23].

Thus, personalization of manufacturing processes techniques
seeks to meet each consumer as an individual with implicit de-
mands; however, the existing mass customization strategies fea-
ture passive and restricted customer engagement. High levels
of product modification, user experience, and co-creation allow
for personalization, making the finished product, as well as the
fundamental design and structure, flexible and adjustable and,
as a result, less predictable [24, 25]. For instance, “Industry 4.0”
refers to a broad spectrum of contemporary ideas, many of which
are difficult to precisely distinguish from one another and classify

according to a field. Industry 4.0 combined the benefits of 3.0 and
networked computers to allow for reciprocal communication and
decision-making with or without human intervention [26—28].
Additionally, this Industry 4.0 is primarily driven by cutting-edge
technologies which include cyber-physical systems and the Inter-
net of Things (IoT). The intelligent manufacturing idea is now a
reality [29, 30].

Smart devices are becoming increasingly intelligent due to AI
and the ease with which more data can be accessed. Indus-
tries become more efficient, well-structured, and optimized as
a result [20, 29]. In the end, the real power of industry comes
from a network of digitally linked machines that share informa-
tion [29, 31]. Emerging technological innovation is developing
quickly, with the ultimate goal of benefiting humanity in every
manner. New technologies are emerging at the same time as
improvements in industrial processes. Therefore, Industry 4.0
employs technologies which include big data analytics, 10T, Al,
AM [31, 32], and other technologies, as depicted in Figure 1. The
whole manufacturing process in Industry 4.0 is outfitted with sen-
sors, actuators, and self-governing systems, and the development
of so-called “smart factories,” which are autonomously operated,
is made possible by the use of “smart technology,” which is asso-
ciated with completely digitalized models. This smart factory aids
manufacturing processes that are economically sustainable with
quality control systems that drive intelligent manufacturing and
scheduling [4, 28, 33].

Artificial Intelligience

Additive Manufacturing

Internet of Things
Augmented Reality
Autonomous Robots

(ﬁ; Technology Integration ¢

"“ Cloud and Quantum Computing

Figure 1 ¢ Industry 4.0 and 5.0 technologies transforming smart
product design.

3. Additive manufacturing and product
design

The process of fusing, binding, or solidifying components like
powders and liquid resin is known as additive manufacturing.
It employs three-dimensional (3D) CAD modeling to construct
the component layer by layer. Terms such as 3D printing, solid
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freeform fabrication, rapid prototyping, direct digital manufac-
turing, and rapid manufacturing can describe AM methods [34].
In other words, AM is a cutting-edge digital manufacturing tech-
nique that utilizes CAD models to create 3D items, often layer by
layer. It offers benefits like shorter lead times and lower costs,
as well as the capability to fabricate complex parts with intricate
geometries and patterns, unique microstructures, and distinctive
characteristics, compared to traditional manufacturing processes.
Consequently, AM has garnered significant attention in recent
years from both academic and industrial research communities
worldwide [35, 36].

AM processes are iterative, as shown in Figure 2, and follow three
phases, namely, design, manufacturing, and testing, to generate
components using 3D computer data or Standard Tessellation
Language files, which provide geometry information about the
product. AM is an excellent tool when low production volumes,
high design complexity, and frequent design changes are required.
Even with all of AM’s benefits, its application is still limited due
to its low accuracy and long build times compared to Computer
Numerical Control (CNC) machines. It does not have the same
restrictions as CNC machining since it splits the part into cross-
sections at a resolution equal to the process. However, accuracy
and assembly time can be improved by employing the proper part
orientation. Enhancing precision, cutting down on building time,
and optimizing part orientation can all lower the cost of producing

a part [37, 38].
-FEA/FSI| Analysis

- Initial Model

-3D Printing

-Parameter
Optimisation

\
i)
\
-Specification
-CAD

-Product Standard Checks
-Prototyping
-Customisation

-Mass Production after ‘
PASS

Figure 2 ¢ Phases in iterative intelligent additive manufacturing.

4. The role of AI and smart manufacturing
in the industrial revolution

AM is seen as a key component of the newest industrial revolution,
which is promoting the integration of sophisticated information
technology and intelligent production systems. Several industries
have embraced AM, ranging from aerospace to electronics and
robotics [27, 35, 39—41]. Because of its high demands and small
manufacturing scale, the aerospace industry is one of those that
gain the most from AM technology and sustainability effects [41].

To address the issue of waste from aviation sector manufactur-
ing procedures, researchers looked into a project run by the EU
FP7 MERLIN. This project produced an improved AM technique
called Laser Material Deposition (LMD), which is utilized in the
production of bladed discs for aero engines. The trash from the
prior method, known as “swarf,” that could not be recycled is
eliminated by this new procedure and useful for many AM ap-
plications [42]. Furthermore, it was demonstrated that the LMD
method saved 30% of the time and 60% of the materials in the
Fraunhofer ILT [40, 43]. According to Elhazmiri et al. [36] and
Godina et al. [44], additive AM is essential to Industry 4.0. The
various manufacturing processes and stages resulting in the final
product distinguish AM from traditional manufacturing. These
roles include the following.

4.1. Savings of time and materials

In traditional manufacturing, materials are molded into the de-
sired shape using subtractive processes like milling, cutting, and
machining. In contrast, AM generates far less material waste and
creates products by putting materials where they are needed.
Waste minimization is one advantage of this method. The capacity
of AM to produce complex designs that would have been impossi-
ble with conventional methods is what many innovators find most
fascinating. It enables engineers to change objects, produce small
quantities of goods at a reasonable cost, and increase production
by reducing costs and lead times. It also enables engineers to
design components with complex structures and materials that do
not require assembly [45, 46].

4.2. Efficient delivery

AM is becoming the preferred technique for many indus-
tries, including consumer products, healthcare, automotive, and
aerospace, in order to ensure accuracy and efficient delivery. It is
also evident that big blue-chip businesses understand its poten-
tial to improve supply chains, shorten lead times, and improve
product design in order to gain a competitive edge over nearby ri-
vals [21, 46]. Process efficiency customization is made possible by
AM’s ability to produce complex designs and unique items; how-
ever, when AM is deployed, decentralized production streamlines
supply chains and lowers transportation costs. Traditional man-
ufacturing processes often involve complex tooling and assembly
procedures; AM simplifies these processes by producing compo-
nents directly, reducing complexity and failure spots [27, 47].

With the use of machine learning (ML), an Al technology, a
machine or system may automatically learn from data and make
predictions or judgements without explicit programming [48].
Medical diagnostics [49, 50], material property prediction [51],
smart manufacturing [52], autonomous driving [53], natural lan-
guage processing [54], and object identification [55] are among
the study fields where ML is becoming more and more popu-
lar. ML algorithms are frequently divided into three categories:
reinforcement learning, unsupervised learning, and supervised
learning.

A semi-supervised ML paradigm called reinforcement learning
enables the model to engage with the surroundings and learn
which activities will result in the highest rewards. The model
learns from its own behaviors and does not require any training
dataset. Reinforcement learning has been widely used in many
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applications [56, 57]. On the other hand, in supervised learning, a
set of computer programs may learn from a collection of labeled
data in the training set, which increases the programs’ ability to
identify unlabeled data from a test set accurately. The datasets can
take many formats, such as text, audio snippets, or photos. The
cost function is an objective function that determines the discrep-
ancy between the expected and actual output values. After every
iteration (or epoch) of the training process, the parameters (or
weights) of neurons in neighboring layers are modified to lower
the cost function [58]. Conversely, unsupervised learning relies
on unlabeled data and is a data-driven ML technique deployed
to unravel patterns that are hidden or in dissimilar state (i.e.,
clustering in a given random dataset).

5. Al and product manufacturing

Every day, the manufacturing sector generates a huge amount of
data. This data comes in a variety of formats, such as monitoring
data acquired from production lines, weather conditions, and all
the performance parameters. Different countries have given this
process different names (Germany—Industry 4.0; USA—Smart
Manufacturing; South Korea—Smart Factory) [20, 31]. The prod-
uct quality and its processes may be expanded sustainably with
the aid of the valuable information that has been retrieved from
the big data. But the drawback of having so much data is that
it might cause confusion or lead to incorrect conclusions. The
industrial sectors always benefit from a well-established system
for handling such large amounts of data. Additionally, it should
be mentioned that having such a trustworthy data system available
aids in process quality improvement, cost reduction, and customer
expectation comprehension [59]. ML has drawn the attention of
numerous researchers and investigators from around the world in
a variety of fields which include engineering services, biomedical
engineering, auto industry, communication, and pharmaceuticals.
It should be observed that ML offers wide range capacity in smart
manufacturing including scheduling, capacity analysis, material
resource planning, quality control, maintenance planning, and
enterprise resource planning [60]. The genetic algorithm was
employed by Rolf et al. [61] to solve a hybrid flow scheduling ap-
plication. The findings of the created model were better than those
of the industry-accepted approach. The evaluation of the splicing
intensity of an uncontrolled beam sample was achieved with sup-
port vector regression, thus enabling the current paradigm of ML
in the field of product manufacturing.

6. Al and design for additive
manufacturing

It must be observed that ML may also enhance AM’s capabili-
ties. Artificial neural networks, for example, have the potential
to enhance production quality by monitoring the whole manu-
facturing process, controlling geometric changes, and detecting
deviations in the process or component problems. Blockchain
technology may facilitate traceability applications in a range of AM
industries, especially those with exacting production processes,
such as the aviation and medical sectors. Although it varies from
traditional Design for Manufacturing and Assembly (DfMA) in a
number of areas, DfAM is a subset of Design for Manufacturing
(DfMA). Designers are reconsidering the standard DIMA method
used in AM since it may create intricate structures that are not

feasible to manufacture with conventional manufacturing tech-
niques [62]. Because AM can produce the complete product in
a single step, it also skips the assembling process. DfAM can be
described as taking into account both the distinctions between AM
and traditional manufacturing methods and the special potential
of generalized DfAM enabled by ML based on established rules
of design compliance [63]. Integrating ML into design for AM
facilitates the development of eco-friendly products and aids in
establishing both design guidelines and requirements for cellular
structures. [64, 65]. Thus, the subsequent sections are dedicated
to the discussion of the value of ML across the elements in DfAM
and the domains of AM and AI convergence, as depicted in Fig-
ure 3.

Customization

Integration of
Large
Language
Modeling

Characterization

AM with Al
applications

Topologies
and
Optimization

Rapid
Prototyping

Material

Design

Figure 3 ¢ Overview of the major application domains for AM and
AT convergence towards product design.

6.1. Design of topologies and optimization

A technique for building structures that maximizes material dis-
tribution within a design region while accounting for partic-
ular stresses and constraints is called Topology Optimization
(TO) [66]. TO methods are technologically demanding, partic-
ularly for mass-scale and challenging-to-make components, be-
cause they usually include several designs and prototype rep-
etitions. After the ML models are well-learnt, they may offer
beneficial suggestions without requiring a restart, enabling the
ML-centric method to supplement the traditional TO method.
Regretfully, little research has been carried out on using ML to de-
velop topologies for AM applications. While a clustering approach
was employed during the designing process, Lui et al. [22] and
Yao et al. [67] presented a unique ML framework that cut across
AM with its design characteristics. The process did not employ
TO methods; instead, lightweight components that were extracted
from a set in the original model were employed to replace the
heavy ones. To fix a mechanical issue, a convolutional neural
network (CNN) was used to upskill the intermediate topologies

ACADEMIA MATERIALS SCIENCE 2025, 2

4of11


https://doi.org/10.20935/AcadMatSci7868

https://doi.org/10.20935/AcadMatSci7868

learnt by standard TO approaches. In order to predict the best
designs at an intermediate stage, the TO algorithm was stopped
after just a few rounds. The learnt CNN method may predict
the topology and its optimization, which can be more efficient
than simplified isotropic material with penalization (SIMP) with
a few odd pixel-wise adjustments. The developed network out-
performed SIMP in terms of both performance and numerical
precision, and may be used to handle heat flux concerns and
thresholding. This demonstrates the wide generalizability of the
CNN model without necessitating an understanding of the nature
of the problem [68, 69], as seen in Figure 4.

Predicted Real
Product

AM Input image

CNN

16 32 32 1
N J |

Generalized
prediction

-
Convolutional layers

Figure 4 « Hypothetical CNN prediction of optimal product de-
sign manufactured with AM. The number 1 is the structure of the
generalised prediction, while numbers 16, 32, and 32 indicate the
number of feature maps (filters) in each convolutional layer of
the CNN, which typically uses more filters as it goes deeper into
a CNN, to recognise more complex and abstract features. In this
hypothetical generalised example, (16) is the first convolutional
layer: it detects simple patterns like edges and textures. (32)
second convolutional layer: combines those patterns into more
complex shapes, and (32) third convolutional layer: refines and
detects even more detailed features.

6.2. Design of materials

It should be observed that metamaterials are composites with
unique qualities that have been developed by industry experts and
materials specialists in order to achieve certain desired charac-
teristics. The Edisonian approach of creating metamaterials by
hand is very challenging and time-consuming. Thus, applying ML
techniques can significantly speed up the synthesis of metamate-
rials such as bioinspired composite design [70]. Researchers and
materials specialists can now forecast material characteristics to
create new metamaterials because of recent advances in ML. Ad-
ditionally, as several researchers have demonstrated, AM methods
may bring to life concepts that were previously impossible to
manufacture. Modern ML in materials and AM methods have a lot
of unrealized synergistic potential. Additionally, Karimzadeh M.
et al. [71] examined the role of ML in the design and optimization
of functionally graded materials, facilitating the development of
novel materials with spatially varying physical and mechanical
properties. These designs have the potential to help in manufac-
turing intelligent products [72].

Developers have encountered challenges in knowing the quality
of a product developed with a certain set of processing param-
eters due to the optimization of processes that remain problem-
atic [73, 74]. As a result, a number of procedures, including print-

ing prototypes and confirming their effectiveness, are required to
guarantee product performance, which makes the design expen-
sive, time-consuming, and uncertain. Consequently, it might be
quite beneficial to have a direct correlation between regulating
factors and product performance. Although calculations and tests
are useful methods for making a link, it might be challenging to
obtain the best variables when there are several intertwined input
parameters. To improve operational efficiency, ML approaches
may be applied as replacement models [34, 75]. Process parameter
development and optimization have historically been carried out
using simulation techniques or experiment design in order to
additively create novel materials. But when it comes to metal AM,
creating an experimental plan frequently calls for a drawn-out and
expensive research procedure.

6.3. Characterization of powder spreading

The level of consistency for powder distribution greatly influences
the quality of the finished components in the PBF process. Inade-
quate powder application might result in several flaws or possibly
the failure of the entire fabrication because of warping or swelling.
Defects in powder spreading can take many different forms, such
as debris covering the powder bed, recoater dragging impurities,
recoater impacting humped or curled-up components, or recoater
blade damage. Furthermore, it would be ideal to do away with
the requirement for specially designed detectors for particular
abnormalities. In order to do this, a method for automatically
identifying and categorizing powder spreading flaws across the
fabrication has been implemented [776], alongside other emerging
methods, most particularly ML techniques [75], with significant
benefits towards sustainability [46].

7. Al-guided AM: challenges and
prospects

7.1. General challenges

The creation of ML software and the availability of learning data
are prerequisites for using Al in 3D printing. In AM, in situ mon-
itoring and process learning have drawn more attention recently.
In terms of research, ML has been used in several areas related to
process customization, manipulation, and optimization. Control-
ling characteristics, including defect density, local flaws, internal
stresses, design correctness, and microstructural variabilities, is
one concern. However, because there are so many factors in data
analysis, it is not easy to regulate these parameters. The result is
influenced by design decisions, part shape, material kinds, process
parameters, and environmental conditions. AI/ML may be ex-
tremely helpful in comprehending the impacts of some controlled
factors, while other variables function as noise or extra parameters
whose impact can only be discovered over time [22, 75, 76]. AM
has used AI/ML methods, such as supervised, unsupervised, and
reinforcement learning. In order to minimize mistakes, minimize
flaws, or customize the microstructure, unsupervised and rein-
forced learning algorithms can change parameters inside a build,
create patterns and models, and learn from the process locally.
Feedback control, data processing, data analysis, and local mon-
itoring are necessary for this strategy. It calls for thorough data
gathering, quick processing, analysis, and useful feedback. When
deterministic methods are not enough to make local judgements,
statistical analysis could be necessary [22].
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Industry 4.0’s combination of AM and Al has the potential to
completely transform the manufacturing industry. Nevertheless,
this integration has a number of challenges in addition to its many
advantages. These include:

i. Technical challenges;

ii. Data security concerns;
iii. High implementation costs;
iv. Skills gaps;

v. Dependence on data quality.

The technical difficulties involved in combining AI with AM are
one of the main disadvantages. AM systems must precisely control
the manufacturing process, and Al algorithms must be able to
comprehend and react to the massive volumes of data produced
throughout the manufacturing process. But integrating these two
technologies can be difficult, and technical problems including
incompatibilities, data formats, and software integration can oc-
cur. Data security issues are a major disadvantage of combining
AT and AM. Large volumes of data, such as design files, manu-
facturing parameters, and quality control data, are produced by
AM systems. For Al algorithms to learn and forecast, they need
access to this data. Nevertheless, this information may be private
and susceptible to online attacks. Inadequate security measures
can allow data to be compromised, resulting in financial losses,
industrial interruptions, and theft of intellectual property [60]. A
large investment in new tools, technology, and training is also nec-
essary for the integration of AI with AM. The implementation of
these technologies may be too costly for small and medium-sized
businesses (SMEs). Additionally, these systems can be expensive
to maintain and update, which makes it difficult for businesses to
obtain a return on their investment. Expertise in data science, ML,
and AM are among the specific talents needed to integrate AI with
AM. However, there is a substantial scarcity of skilled individuals
in these areas, making it tough for organizations to locate the per-
sonnel they need to install and manage these technologies [4, 27].
The quality of the data utilized to train Al algorithms in AM has
a significant impact on their accuracy and dependability. Hence,
the accuracy of the AI algorithms may be impacted by noisy,
inconsistent, or incomplete data produced during the AM process.
Additionally, the data might not accurately reflect the manufactur-
ing process, which could result in projections that are skewed or
incorrect [33]. Hence, these challenges can be addressed with the
following recommendations:

e The use of LLMs in product design;

e Creating customized robots as designers for specific design
areas and applications.

7.2. LLM and prospects

The integration of LLMs with AI/ML techniques in AM holds con-
siderable promise for transforming product design. LLMs could
evaluate and understand significant design data, manufacturing
specifications, material properties, and user feedback. This en-
ables the development of optimal designs, the prediction of po-
tential issues, and the customization of products to meet specific
needs. LLMs can assist in navigating the difficulties associated

with the myriad variables in AM data analysis, such as design
choices, geometric configurations, material classifications, and
process parameters [77—79]. By understanding the relationships
among these elements, LLMs can aid in controlling attributes such
as defect density, localized abnormalities, and microstructural
variations. Furthermore, LLMs can enhance in situ monitoring
and process learning by evaluating real-time data and providing
feedback for process optimization. This may lead to improved
design accuracy, reduced errors, and tailored microstructures,
resulting in a much lower cost of unit production than using AM
only, as highlighted in Figure 5.

\@ ? .

LLM
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LLMs in Smart Product Design
Customized Robot Designers

Predicted Real
product

AM Input image

|
Cost per Unit

PARALLEL WORKFLOW TIMELINE
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Robot LL
Concept Robot —g——8——e——8—»
Mechanical Robot ::to—o—o
Structural Analysis Robot R S
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MILESTONES REQUREVENTS CREATED DESIGN DESIGN

DECISION POINT Kb

Figure 5 ¢ Prospects of AM and Al convergence in smart product
design. Point 1: Highest unit cost (conventional manufacturing),
Point 2: Lower unit cost (additive manufacturing—3D printing),
and Point 3: Lowest unit cost (additive manufacturing enhanced
with AI).

Additionally, the future of product design may involve customized
robots integrated with LLMs that act as autonomous designers.
These robots could understand design specifications, develop new
solutions, and implement those ideas through advanced manu-
facturing techniques. Combining LLMs with robotic systems en-
ables a closed-loop design and manufacturing process. Robots
as designers might assess real-time feedback from production
and adjust their designs accordingly, leading to ongoing improve-
ments and optimization. These robots could be customized for
specific sectors like aerospace, automotive, or medical devices,
and equipped with specialized skills and capabilities. They might
collaborate with human designers, offering artistic inspiration and
technological support. The robots would use AI/ML techniques,
including supervised, unsupervised, and reinforcement learning,
to reduce errors, fix defects, or customize microstructures, while
employing feedback control, data processing, data analysis, and
localized monitorin

As Al-driven AM advances, establishing trust, upholding ethical
norms, and improving human-machine collaboration are impera-
tive concerns. Three interrelated taxonomies, namely, ethics and
governance, bias reduction, and workforce improvement, with the
advancement of LLM-driven robotic designers, are pertinent to
formulate a technically informed and creatively advanced plan.
These perspectives outline a framework for Al-driven AM that
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is ethically sound, unbiased, and fundamentally centered on hu-
man values. Integrating transparent governance, bias mitigation,
workforce empowerment, and leveraging advanced LLM robotics
into AM may usher in an era of smart, sustainable, and equitable
production.

i. Ethics and Governance: Transparent and accountable Al is
crucial in high-stakes production environments. Industrial
standards, such as the European Commission’s Ethics Guide-
lines for Trustworthy AI, emphasize the principles of hu-
man oversight, technical robustness, privacy, transparency,
justice, and societal benefit [80]. In manufacturing, this re-
quires establishing transparent process controls, substitut-
ing “black box” neural predictors with interpretable mod-
ules, such as surrogate models for laser power modulation
in powder bed fusion, which engineers can assess and vali-
date [81, 82]. As analyzed by Ahangar et al. [83], federated
learning architectures facilitate the interchange of insights
among supply chain nodes while preserving proprietary data
ownership. Integrating continuous model-governance cy-
cles, monitoring drift, assuring policy adherence, and doc-
umenting decision rationales will anchor AI-AM systems in
responsible product design innovation.

ii. Recognition and Reduction in Bias: Bias can infiltrate AM
processes through skewed process logs or unrepresenta-
tive sensor data. Brintrup et al.’s [76] research on ethical
Al in manufacturing demonstrates how biases in training
data may perpetuate defects or economic inequalities among
stakeholders. Mitigation strategies include dataset audits us-
ing adversarial samples to reveal edge-case issues, optimiza-
tion procedures that promote fairness by reweighting under-
represented process conditions, and post hoc explainability
tools to clarify prediction mechanisms and identify inherent
biases [72]. This approach encourages cross-validation in
synthetic microstructure contexts to detect latent covariance
patterns before they cause production problems.

iii. Workforce Augmentation and Human-Machine Coopera-
tion: Al-enhanced AM requires redefining skills instead of
replacing human ingenuity. Industry 5.0 envisions robots as
collaborative partners, machines performing repetitive tasks
while humans oversee strategy, quality control, and inno-
vation. This indicates that AM operators skilled in compre-
hending LLM-generated design recommendations achieve
30% faster iteration cycles and 40% fewer error correc-
tions [15]. Concurrently, Freire et al. [82] disclosed, through
a factory-floor user study, that operators value LLM chatbots
for rapid troubleshooting but ultimately depend on human
experts when nuance or tacit knowledge is required. Up-
skilling projects should therefore integrate the foundational
understanding of AM with proficiency in Al training techni-
cians to validate big language model outputs, enhance mod-
els, and incorporate sensor feedback into digital twins. Mas-
sive language models will evolve from text-based assistants
to embodied design agents within AM systems. Fan et al. [84]
introduced an “embodied intelligence” system wherein LLM
agents automatically transform high-level briefs into G-code
toolpaths, optimize topologies via in-context learning, and
modify designs in real time via sensor feedback loops. The
GenAl for Manufacturing consortium at MIT established

that GPT-4-derived agents can deliver multi-material com-
posite instructions with 85% accuracy compared to human
experts, expediting the rapid manufacturing of bioinspired
lattices [85]. To realize this vision, robust integration layers,
combining semantic parsers, physics-informed neural net-
works, and digital-twin APIs, would need to converge into
modular, secure platforms.

8. Conclusions

The development of the manufacturing sector depends on inno-
vative research on production methods, materials, and product
design. Manufacturing techniques must be creative and inventive
to meet the ever-increasing complexity requirements for new
products. AM and AI have gained popularity recently because of
their many benefits and challenges, which have been thoroughly
examined and reviewed by the scientific community. This study
has carried out a comprehensive conceptual discussion of AM and
AI with LLM convergence. The importance of part orientation,
build time estimation, and cost computation has all been thor-
oughly examined. For instance, AM and AI’s primary challenges
are limited part size, anisotropic mechanical properties, the cre-
ation of overhang surfaces, high costs, low precision, warping,
layer misalignment, mass production, and material utilization
constraints. More research and investigation are needed on these
problems. Selecting the appropriate portion orientation is crucial
in AM and Al, as it reduces build times, enhances geometrical
and dimensional accuracy, and lowers support volume and part
production costs. AM remains the foundation of Industry 5.0,
offering unparalleled flexibility, efficiency benefits, and decentral-
ized production capabilities. The seamless integration of AM into
smart factories driven by LLM agents will encourage product in-
novation and the rethinking of industrial paradigms and influence
the industry’s future.
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